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SUMMARY

The solution of fluid flow problems exhibits a singular behaviour when the conditions imposed on the
boundary display some discontinuities or change in type. A treatment of these singularities has to be
considered in order to preserve the accuracy of high-order methods, such as spectral methods. The
present work concerns the computation of a singular solution of the Navier–Stokes equations using the
Chebyshev-collocation method. A singularity subtraction technique is employed, which amounts to
computing a smooth solution thanks to the subtraction of the leading part of the singular solution. The
latter is determined from an asymptotic expansion of the solution near the singular points. In the case of
non-homogeneous boundary conditions, where the leading terms of the expansion are completely
determined by the local analysis, the high accuracy of the method is assessed on both steady and
unsteady lid-driven cavity flows. An extension of this technique suitable for homogenous boundary
conditions is developed for the injection of fluid into a channel. The ability of the method to compute
high-Reynolds number flows is demonstrated on a piston-driven two-dimensional flow. Copyright
© 2001 John Wiley & Sons, Ltd.

KEY WORDS: asymptotic expansions; Chebyshev-collocation spectral method; Navier–Stokes equations;
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1. INTRODUCTION

The Chebyshev spectral methods are known to be very accurate for smooth solutions: the error
is O(N−�), where N is the degree of the polynomial and � is connected to the regularity of the
solution. However, in a large number of flows of practical interest, the solution is not smooth
and possesses only a small number of continuous derivatives. Even for incompressible flows in

* Correspondence to: Laboratoire J.A. Dieudonné, Université de Nice–Sophia Antipolis, BP 71, Parc Valrose,
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a simple rectangular cavity, the solution is not infinitely differentiable. A classical example is
given by the existence of an infinite sequence of eddies in a corner with no-slip boundary
conditions [1]. In this situation, the second-order derivatives of the vorticity become infinite at
the corner. Also, when some of the conditions imposed on the boundary are discontinuous, or
change in type, the solution exhibits a singular behaviour that diminishes the accuracy
expected from high-order numerical methods such as the Chebyshev method.

These singularities are often introduced by the mathematical modelization of the flow. Let
us consider, for example, the flow inside a cylinder chamber, where one of its sides is being
compressed under the motion of a piston. Its mathematical modelization introduces singulari-
ties at the boundary: more precisely, the velocity of the fluid takes multiple values at the
contact points between the moving boundary of the piston and the wall chamber. This
modelization leads to a physically unrealistic flow, since by following the analysis of Taylor [2],
an infinite force is required to move the piston, and in particular the stress is infinite at the
contact points. We may certainly think that, in reality, the piston does not make contact with
the wall and there exists a small gap that enables an exchange of fluid between the chamber
and the external cylinder. Nonetheless, the fluid leakage must be small enough so that the
real-life problem is close to the one modelled. Analogous unrealistic boundary conditions are
considered in the driven cavity flow [3] that, in spite of the presence of these singularities, has
become one of the reference problems for evaluating numerical methods in fluid dynamics. For
this last problem, where the planar motion of fluid in a rectangular cavity is generated by the
uniform sliding of one of its walls, the study by Hansen and Kelmanson [4] has justified the
validity of the modelization. Even when there is no discontinuities in the boundary conditions
or no change in their type, analogous singularities occur at sharp edges of the physical domain.
A typical example is given by the flow over a backward-facing step [5], where it is well known
that the vorticity becomes unbounded at the re-entrant corner (see, e.g. Reference [1]).

The presence of singularities causes problems in the numerical solution of such flows since
the computed solution loses its accuracy in the vicinity of the singular points. Even for ‘local’
methods, such as the finite difference or finite element methods, spurious oscillations appearing
near the singularity may contaminate the solution in the whole domain [6]. This phenomenon
is even more acute for global solution methods, such as the Chebyshev method, whose
accuracy depends on the regularity of the solution. For a solution with a low regularity, the
‘infinite’ accuracy commonly associated to spectral methods is lost and such methods show
little advantages over local approximation methods. Therefore, a suitable treatment of the
singularities is mandatory for preserving, as far as possible, the high accuracy of spectral
methods.

Numerous techniques have been proposed for circumventing singularities in fluid flow
problems. A first class belongs to ad hoc methods, which do not take into account the
mathematical structure of the singular solution. A common treatment is to use local grid
refinement near the singularity, but the resolution requirement to represent accurately the
abrupt change in the solution can be prohibitive. Several methods concerning the imposition
of vorticity values in finite difference schemes near re-entrant corner flows are discussed in
References [7,8] and references therein. In the framework of spectral methods, it has been
proposed to regularize the problem by smoothing the boundary conditions [9], or to use a
domain decomposition method to locate the singular point at a corner of the computational
domain so that spurious effects are diminished [10].
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Most of the other methods require an a priori knowledge of the mathematical structure of
the singularity. Following the analysis conducted by Moffatt and co-workers [1,11] and
Kondrat’ev [12], the solution of the Navier–Stokes equations can be expressed as an
asymptotic series which is valid in the near vicinity of the singular point. In the case of
homogeneous boundary conditions, the terms of this development are not completely deter-
mined by the local analysis but depend on some constants that can only be calculated by
considering the global flow. Nevertheless, the knowledge of the leading terms of the expansion
can be incorporated in the process of the numerical solution. This idea has led to the
development of finite element techniques, where special elements matching the expression of
the solution are used near the singular point [6,13,14]. A related approach, based on a
singularity adapted interpolation polynomial for generating finite difference approximations
has been proposed in Reference [15]. Alternatively, the leading terms can be used to represent
the solution in a region surrounding the singular point, the unknown constants being
determined by matching the numerical solution computed in the other part of the domain
[5,16,17]. Let us also mention that the knowledge of the singular expansion is employed in
Reference [8] to improve the derivation of vorticity–streamfunction finite difference scheme for
re-entrant corner flows. The efficiency of these methods depends essentially on the validity of
the representation of the singular solution by the first terms of the expansion, i.e. only valid
at a distance to the singular point inversely proportional to the Reynolds number. Thus, these
methods have been essentially applied to flows at moderate values of the Reynolds number.

On the other hand, if the boundary conditions are non-homogeneous, the dominant part of
the asymptotic solution is completely determined and this part can then be easily incorporated
into the complete solution so that the undetermined part to be computed is more regular. This
method, referred to subsequently as the subtraction technique, has been employed in associa-
tion with Chebyshev methods by Schumack et al. [18] for the Stokes flow and by Schultz et al.
[19] for the Navier–Stokes flow in the driven cavity at low Reynolds numbers. Only the first
term of the asymptotic expansion is subtracted in the latter work so that the computed
solutions remain weakly singular: the pressure and the vorticity gradient behave respectively,
like log r and r−1, where r is the distance from the singular point.

The purpose of this paper is to employ this technique for the solution of both steady and
unsteady singular Navier–Stokes flows, and to shed light on the accuracy of spectral methods
for such problems. The association of this technique with the Chebyshev projection scheme
introduced in Reference [20] proves to solve accurately a relatively large class of singular
Navier–Stokes problems, provided that the leading part of the singular expansion is com-
pletely determined. This method is shown to give a high-order convergence rate and is
efficiently applied to high-Reynolds number unsteady flows. An extension of the subtraction
method is also proposed for the case of homogeneous boundary conditions, where the
unknown constants of the singular expansion are determined throughout the solution process.
Progress on this work has been reported briefly in Reference [21] and benchmark results on the
lid-driven cavity flow obtained with the present method have been presented in Reference [22].

The paper is organized as follows. In Section 2 the accuracy of the Chebyshev-collocation
method is investigated on model problems whose singularities mimic ones encountered in the
Navier–Stokes applications. In particular, although the ‘infinite’ order of the Chebyshev
method is lost, comparisons with finite difference methods up to sixth order will show that the
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accuracy of the spectral method is still superior. Moreover, the convergence rate of the
interpolation error for singular functions in two dimensions is numerically established, showing
in particular the doubling of the rate for corner singularities. The latter result will prove useful
for evaluating the accuracy that is expected when a Chebyshev-collocation scheme is associated
with the subtraction technique. A formal technique for the construction of the asymptotic
expansion of the singular solution of the unsteady Navier–Stokes equations is presented in
Section 3. This technique, an extension of the construction proposed in References [1,11], is
applied to a generalization of Taylor’s ‘scraper problem’ [2], where the lid velocity is unsteady.
The numerical treatment of singular Navier–Stokes problems is presented in Section 4. The
technique of subtraction of the singularity is introduced, and the resulting equations are solved
using the projection scheme presented in Reference [20]. The properties of the subtraction
technique are first discussed in Section 5 for the driven cavity flow. It is shown in particular
that the method gives a global accuracy that agrees with the error estimates obtained in
Section 2. The ability of the method to compute flow at high Reynolds number is illustrated
by giving results on the unsteady flow at Re=9000. The subtraction method is then applied,
in Section 6, to the injection of a fluid into a channel. The discontinuity of the upstream
boundary condition introduces singularities whose effects on the spectral solution are worse
than in the previous application since they are no longer located at the corners. It will be found
necessary to introduce logarithmic terms in the expression of the singular solution, and that the
first Navier–Stokes term can only be determined by the local analysis up to a constant. This
constant, which depends on the global flow, will be determined numerically by using an
iterative process. Finally, computations of the piston-driven flow in a two-dimensional
chamber are reported in Section 7. The asymptotic form of the singularities, introduced by the
motion of the piston at its contact points with the chamber, is easily derived from the
construction described in Section 3. The numerical results show the efficiency of the subtrac-
tion method for computing flows of practical interest.

2. THE SPECTRAL ACCURACY

The Chebyshev-collocation method is a global method for solving differential problems. The
method consists in approximating the solution with a polynomial of degree N, and requiring
that the equation be satisfied at discrete points, which are the extrema of the Chebyshev
polynomial TN. Whereas local methods, such as the finite difference method or the h-version
of the finite element method, have a fixed-order of accuracy, the main interest of the
Chebyshev-collocation method lies in its properties of accuracy: the method is more accurate
as the solution is regular.

For an illustration of this property, let us consider the interpolation of a function u, defined
in the one-dimensional domain �= ]−1, 1[ by the Chebyshev method. The interpolation
polynomial INu is defined as the polynomial of degree N which takes the values of u at the
N+1 Gauss–Lobatto points

�c={xi=cos i�/N, i=0, . . . , N} (1)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 125–163
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which are the zeros of the polynomial (1−x2)T �N(x). In the framework of Sobolev functional
spaces Hw

m(�), with m�0, equipped with the Chebyshev weight w(x)= (1−x2)−1/2, the
general theory of interpolation provides the following error estimate, for u�Hw

m(�) [23,24]:

�u−INu�Hw
p(�)�cNp−m�u�Hw

m(�) (2)

where p=0 (i.e. the Lw
2 (�) norm) and p=1. This error estimate can be qualified as optimal:

the power of N appearing in Equation (2) is equal to the difference between the order of the
Hilbert spaces appearing in the left and right sides of the inequality. The estimation in the
maximum norm L�(�), which reads

�u−INu�L �(�)�cN1/2−m�u�Hw
m(�) (3)

will also be considered in the following
If the function u is smooth (i.e. u�Hw

m(�) for every m�0), Equations (2) and (3) show that
the interpolation error decreases more rapidly than any power of 1/N : it is the well-known
exponential accuracy that makes spectral methods so attractive. On the other hand, if u
displays a singular behaviour (typically the function possesses only a finite number of
continuous derivatives at a singular point s��� = [−1, 1]), then the ‘infinite’ order of accuracy
is lost: the general theory shows that the order is algebraic and that it is connected to the
regularity of the solution. Furthermore, for applications where the regularity of the solution is
weak, the theory shows that the Chebyshev method offers no gain of accuracy against the
classical local methods.

Now, the accuracy of the Chebyshev-collocation method is investigated numerically for
prototype functions displaying the behaviour u�r� at a singular point s��, where r denotes
the distance to the point s. The form of these functions is chosen so that it mimics some of the
singular solutions of the Navier–Stokes problems considered in the following sections. The
precise convergence results that are obtained for the interpolation and the solution of an
elliptic equation in this simple one-dimensional setting will prove to be analogous in higher
dimensions. These results will give a basis on what accuracy should be expected in the
Chebyshev approximation of singular problems.

A typical example of singular function is given by the function u� defined by

u�(x)=
�0, −1�x�0

x�, 0�x�1
, with ��0 (4)

The pth derivative of this function, where ��p��+1, is discontinuous at the middle of the
interval �; in particular, u� belongs to Hw

m(�) for m��+1/2. By denoting IN=u�−INu�,
Equations (2) and (3) give the following theoretical convergence rates:

�IN�Lw
2(�)�c1N−1/2−�, �IN�L �(�)�c2N−�, �IN�Hw

1(�)�c3N1/2−� (5)
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Table I. Order of the interpolation error of the singular function u�(x)
(Equation (4)), evaluated numerically for various norms.

�=2 �=4 �=6

2.5 4.5Lw
2 (�) 6.5

L�(�) 2.0 4.0 6.1
Hw

1 (�) 1.5 3.5 5.6

were c1, c2, c3 are positive constants related to the norm of u�. Table I displays the numerical
estimation of the convergence rate � obtained for the interpolation of u�, for �=2, 4 and 6.
The value of � is estimated by considering interpolation polynomials of degree N in the range
[8, 24]. The continuous Lw

2 (�) and Hw
1 (�) norms are calculated by evaluating the value of INu�

and (INu�)� on the M+1 Gauss–Lobatto grid, with M=1000, and by using the Gauss–
Lobatto quadrature formula. The L�(�) norm is approximated by taking the maximum of IN

on the above M+1 points. The results displayed in Table I show that, for this singular
function, the numerical convergence rates match the theoretical ones given by Equation (5).

The second example deals with the function ��, defined in � by

��(x)= (1−x2)� (6)

where ��0 is not an integer and whose singularity no longer lies in the interior of � but at
its boundary. More precisely, the function �� belongs to Hw

m(�) for every m��+1/4. The
following theoretical convergence rates are deduced from Equations (2) and (3):

�IN�Lw
2(�)�c1N

−1/4−�, �IN�L �(�)�c2N
1/4−�, �IN�Hw

1(�)�c3N
3/4−� (7)

For diverse values of �, Table II display the convergence rates of the interpolation of ��,
estimated numerically by the same method as described above. One can infer from these results
that the estimated rate is much larger than the one predicted by the general theory (Equation
(7)) and that the interpolation error follows, in fact, the rule:

�IN�Lw
2(�)=O(N−1/2−2�), �IN�L �(�)=O(N−2�), �IN�Hw

1(�)=O(N3/2−�) (8)

In particular, in the Hilbertian norms, Lw
2 (�) and Hw

1 (�), the order of accuracy is exactly twice
the rate given in Equation (7). We have to mention that these numerical results concerning the

Table II. Order of the interpolation error of the singular function ��(x)
(Equation (6)), evaluated numerically for various norms.

�=0.9 �=1.9 �=2.9

Lw
2 (�) 2.2 4.2 6.2

5.93.81.8L�(�)
Hw

1 (�) 0.3 2.3 4.4

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 125–163



CHEBYSHEV-COLLOCATION METHOD 131

doubling of the convergence rate are in accordance with the theoretical results established by
Bernardi and Maday [25] for approximations by Jacobi polynomials (with the weight w(x)=
(1−x)−1/2).

Then, let us consider the approximation of the one-dimensional Dirichlet problem

Lu(x)= f(x), x�� (9a)

u(−1)=g0, u(1)=g1 (9b)

where L is a second-order elliptic operator. For the Poisson equation (L= −d2/dx2), the
collocation solution uN of Equation (9) verifies the optimal error estimate for u�Hw

m(�) and
f�Hw

m−1(�) with m�2 [26]

�u−uN�Hw
1(�)�cN1−m(�u�Hw

m(�)+� f�Hw
m−1(�)) (10)

As in the interpolation case, this estimate shows that the accuracy of the spectral solution is
governed by the regularity of the solution. As an illustration of this property (Figure 1), let us
compare the accuracy of the solution of Equation (9) with L=�2−d2/dx2, �=10, obtained
using various methods: second-order finite difference method, uniform grid h=2/N (curve 1)
and Gauss–Lobatto grid (1) (curve 2); sixth-order Hermitian method with uniform grid [27]
(curve 3) and Gauss–Lobatto grid (1) [28] (curve 4); and, finally, Chebyshev-collocation
method with Gauss–Lobatto grid (1) (curve 5). The error E is measured with the discrete l2(�)
norm defined by

E=
� 1

N−1
�

N−1

i=1

�u(xi)−uN(xi)�2�1/2

(11)

where u refers to the exact solution. Figure 1(a) displays the error E for the smooth solution

u(x)=1−
sinh �(x+1)

sinh 2�
(12)

obtained for f=�2, g0=1, g1=0. According to the general theory, which provides an error
estimate analogous to Equation (10) for this problem [29], the spectral solution exhibits an
exponential convergence rate. The second example (Figure 1(b)) concerns the calculation of the
singular solution (6) with �=2.9, from which we define f in Equation (9a) and g0=g1=0. The
convergence rate observed for this solution, and for other values of �, is given in Table III for
the various methods. It can be seen in Figure 1(b) that not only is the accuracy of the spectral
method but also that of the high-order Hermitian methods affected by the singularity. The
Hermitian method with the collocation mesh takes advantage of the clustering of the
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Figure 1. Error E versus the number N of degrees of freedom: (a) smooth solution, (b) singular solution
(see the text for the meaning of the labels).

Gauss–Lobatto points near the boundary, where h�1/N2, which leads to an improvement of
the convergence rate compared with the equal-order scheme with uniform mesh. Nevertheless,
the spectral method proves to be the scheme that gives the lowest magnitude error for these
types of singularities. Moreover, it has been checked for this example that the convergence rate
of the spectral approximation in the continuous norms Lw

2 (�), L�(�) and Hw
1 (�) matches

Table III. Order of the error E obtained for the solution of problem (9) with the singular solution (6)
using finite difference methods and the Chebyshev-collocation method.

Chebyshev-Finite difference, second-order Finite difference, sixth-order
collocation

Gauss–LobattoUniform meshGauss–LobattoUniform mesh

2.1 4.2 4.7�=2.1 1.8 2.0
�=2.9 2.0 2.0 2.9 5.6 5.9
�=3.1 6.35.93.12.02.0

2.0�=4.9 5.2 6.02.0 10.5
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those displayed in Table II for the interpolation case. Thus, we can infer that the Chebyshev-
collocation error of the Helmholtz problem (9), whose singular solution is Equation (6), is
optimal and follows the rules:

�u−uN�Lw
2(�)=O(N−1/2−2�), �u−uN�L �(�)=O(N−2�)

�u−uN�Hw
1(�)=O(N3/2−2�) (13)

Finally, we propose to evaluate the interpolation error of the singular functions involved in
the asymptotic solution of the two-dimensional Navier–Stokes problems considered in follow-
ing sections. In the domain �= ]−1, 1[2, the singular functions take the form

u�,�
s =r� log r�f(�), with ��1, �=0 or 1 (14)

in the polar co-ordinate system (r, �) centred at the singular point s���, where f(�) is smooth
function. For the flow in the driven cavity and in the piston engine, the point s is located at
the corners of the domain (the functions u�,�

s are then typical corner singularities), while in the
injection problem, the point s is located on the edge of �. For the first two applications only
functions of the form r�f(�) are involved in the asymptotic solution. However, logarithmic
terms can be present in the asymptotic solution of singular Navier–Stokes problems (Kon-
drat’ev [12]) such as the injection problem. As a matter of fact, the interpolation error of u�,�

s

is evaluated in two distinct cases. At first the point s is located at (−1, 1/2) in the middle of
an edge of �, and the function f reads

f(�)=
Re

16�2

�
(�−�) cos �+2

�
�2−��+

21
8
�

sin �+ (�−�) cos 3�−
7
4

sin 3�
�

(15)

with Re=1000. This function is found in the second term of the singular expansion of the
velocity in the injection problem. In a second case, the point s is at the corner (−1, 1) of �.
The function f is now given by the term u2

A(� ; Re), with Re=1000, which is involved in the
asymptotic solution of the driven cavity flow; its expression can be found in the appendix of
Reference [22]. We recall that the general theory of interpolation provides an error estimate in
the Lw

2 (�) norm similar to Equation (2) for the one-dimensional case [23,26].
Table IV displays the numerical estimation of the rate of the interpolation error �u�,�

s −
INus

�,��Lw
2(�) obtained for various values of (�, �); the Lw

2 (�) norm has been evaluated using

Table IV. Order of the interpolation error of the two-dimensional function
u�,�

s , for various location of the singular point s.

r3 log r r r log rs r3 r2 log rr2

3.59 2.75 2.55 1.75 1.54(−1, 1/2) 3.70
6.6 4.9 4.6(–1, 1) 3.0 2.76.9
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the Gauss–Lobato quadrature formula with M=800 in both directions. Firstly, it can be
inferred from the results of Table IV that when s is in the middle of an edge, the interpolation
rate follows:

�u�,0
s −INu�,0

s �Lw
2(�)=O(N−3/4−�) (16)

and when s is located at a corner

�u�,0
s −INu�,0

s �Lw
2(�)=O(N−1−2�) (17)

Secondly, the presence of the logarithmic term only has slight influence on the convergence
rate, i.e. the interpolation error of u�,0

s and u�,1
s depends essentially on �.

The comparison between Equations (16) and (17) shows that the convergence rate for
corner singularities is essentially twice better than for edge singularities, up to a constant
induced by the Chebyshev weight. This doubling of the rate has already been noticed in
References [25,30,31] for the spectral Legendre, spectral element and h–p finite element
methods respectively. Estimates (16) and (17) will prove useful for the evaluation of the
singularity subtraction method, which is applied to the Navier–Stokes equations in Section 4
and subsequent sections.

3. SINGULAR SOLUTIONS OF THE NAVIER–STOKES EQUATIONS

In the task of computing unsteady singular solutions of the Navier–Stokes equations by using
the subtraction method, we describe in the present section the technique for determining the
asymptotic expansion near a singular point, in a situation where the flow may depend on time.
The model problem is chosen as the flow of a viscous fluid near the contact point s between
two perpendicular walls, where the motion is generated by the sliding of one of the walls in its
own plane with a given velocity (see Figure 2). This configuration generalizes the steady
‘scraper problem’ of Taylor [2,32] with a lid velocity that is now supposed to be a function of
the time. This problem is somewhat academic but it retains the characteristic features of the
singular solutions of both the driven cavity and the piston engine problems discussed in the
following sections.

The flow is governed by the two-dimensional Navier–stokes equations for an incompressible
fluid where V= (u, �) is the velocity vector, p is the pressure; the Reynolds number Re is
defined by the viscosity of the fluid, a characteristic value of the wall velocity (e.g. its
maximum) and a length L, which is arbitrary for this problem. The boundary conditions are
V= (U(t), 0) on the sliding wall and V=0 on the stationary wall. The initial condition is the
rest, the velocity of the lid U(t) being equal to zero at the initial time. Let us note that the
asymptotic expansion constructed hereafter may only be valid after a short time away from
t=0. A description of the singular solution up to the initial time that is legitimate for a general
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Figure 2. Sketch of the scraper problem with an unsteady velocity U(t).

form of U(t) would require the matching with additional transient terms so that the initial
condition is satisfied; such a construction is out of the scope of the utilization of the
subtraction method. On the other hand, we will discuss conditions on the derivatives of U(t)
at t=0, which may be necessary for using the leading terms of the singular solution in the
numerical technique described in the next section.

Due to the discontinuity of the boundary conditions at the corner s, the solution of the
Navier–Stokes equations is not infinitely differentiable. For determining the asymptotic
solution near the singular point s, it is convenient to introduce the streamfunction � (such that
u=��/�y, �= −��/�x) and to consider a local co-ordinate system (r, �) defined by x=xs+
r cos �, y=ys+r sin �, where (xs, ys) corresponds to the fixed point s and r is the distance to
this point. The equation satisfied by the streamfunction is

�4�=Re
���2�

�t
+V ·�(�2�)

n
(18)

the associated boundary conditions are

��

�r
=0,

1
r

��

��
=U(t) on �=0;

��

�r
=0,

1
r

��

��
=0 on �=

�

2
(19)

In the neighbourhood of the point s, the singular solution of Equation (18) can be written as
the asymptotic expansion

�= �
k�1

�k with �k=r�kfk(�, t) (20)

where the functions fk are smooth. The exponents �k, which can be complex, are such that each
term in Equation (20) is less singular than the previous one, i.e.
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1�Re(�1)�Re(�2)� · · · (21)

In previous works [1,11,33] it was assumed that in the steady state case, the flow near the
corner s was dominated by viscous forces, so that the first term �1 is a solution to the Stokes
system. The following terms were obtained either as corrective terms generated by inertia
forces [11] or as a power series in Re [33]. Both methods do not take into account in their
asymptotic solution the contribution of the eigenfunctions of the Stokes system [1]. The
expression of these eigenfunctions is ��=r�f, where � is any complex number solution to

sin(�−1)�= � (�−1) sin � (22)

with �=�/2, and f is determined up to a scalar function K�(t) of the time. In the following
we shall describe a technique for the determination of the first and most singular terms of
Equation (20). This formal technique does not require additional assumptions on the value of
the Reynolds number and allows the eigenfunctions to be introduced in a systematic way.

First, the substitution of expansion (20) into Equation (18) yields

�
k�1

r�kL�k
fk=Re

� �
k�1

r2+�kT�k
f� k+ �

i, j�1

r�i+�jN�i,�j
( fi, fj)

n
(23)

where f� k refers to the derivative with respect to t, and L�k
, T�k

and N�i,�j
are differential

operators with respect to �, respectively defined by

L�k
fk= fk

i�+ [(�k−2)2+�k
2]f �k+�k

2(�k−2)2fk (24a)

T�k
fk=�k

2 fk+ f �k (24b)

N�i,�j
( fi, fj)= (�j−2)f �1T�j

fj−�i fiT�j
f �j (24c)

The associated boundary conditions obtained from Equation (19) read, for k=1

f1(0)=0, r�1−1f �1(0)=U(t), f1(�/2)=0, f �1(�/2)=0 (25)

and for k�2, the functions fk admit the homogeneous boundary conditions

fk(0)=0, f �k(0)=0, fk(�/2)=0, f �k(�/2)=0 (26)

Every term of expansion (20) is obtained by cancelling the terms of equal power in
expression (23). Starting from the one with the lowest exponent (i.e. the most singular), each
term is then successively deduced from the previous ones. First, we have to arrange, as far as
possible, each side of Equation (23) in increasing order of the real part of the exponent. The
first term of the left-hand side of Equarion (23) is in r�1 and, without knowing the value of �1,
it is not possible to determine whether the dominant term of the right-hand side is in r2+�1 or
in r2�1. However, whatever the relative order of these last two terms, the most singular part in
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Equation (23) is the term in r�1 and the cancellation of this term leads to the differential
equation

L� 1
f1=0 (27)

with the non-homogeneous boundary conditions (25). The second of these conditions leads to
�1=1, the function f1 is then completely determined and is proportional to U(t); its expression
can be found, for example, in References [1,22]. Note that Equation (27) shows that �1=rf1

is a solution to the Stokes equation �4�1=0, the time appearing only as a parameter.
Since the term in r�1 is cancelled, Equation (23) becomes

r�2L� 2
f2+r�3L� 3

f3+ · · · =r2ReN1,1( f1, f1)+ · · · (28)

the following term on the right-hand side being in r3 and/or in r1+�2, depending on the value
of �2, yet unknown. Let us compare the magnitude of the exponent of the first term in each
side of Equation (28), i.e. �2 and 2. The expression N1,1( f1, f1) is a non-vanishing term
depending only on f1 (i.e. independent of r), thus Re(�2)�2. If Re(�2)�2, then f2 would be
a solution to L� 2

f2=0 with the homogeneous boundary conditions (26), i.e. �2 would be an
eigenfunction of the Stokes problem and �2 should be identified with the first root �1 of
Equation (22). This case is impossible since the root with the smallest real part is (Reference
[1]):

�1	3.74+1.13i� (29)

Thus �2 is necessarily equal to 2 and f2 is completely determined by the differential equation

L2 f2=ReN1,1( f1, f1) (30)

with the homogeneous boundary conditions (26). This implies that �2=r2f2 is generated by
the inertia forces of the Navier–Stokes equations, and this term is found to be proportional to
ReU2(t). Its expression is given in, e.g. References [11,22].

This algorithm can be employed for the determination of the successive terms of the singular
expansion (20). The cancellation of the following terms of Equation (23) gives �3=3 and leads
to the differential equation for f3

L3f3=Re [T1 f� 1+N1,2( f1, f2)+N2,1( f2, f1)] (31)

with the homogeneous boundary conditions (26). Thus, the singular term �3=r3f3 is generated
by both unsteady and inertia forces of the Navier–Stokes equations. This term is completely
determined by Equations (31) and (26) and is proportional to Re2, with one part proportional
to U(t) and another one to U3(t). The following term, �4, is found to be an eigenfunction of
the Stokes system of the form �4=r�1f4, where �1=p1+ i� q1 is given by Equation (29), that can
be written as

�4=K� 1
(t)rp1[cos(q1 log r)g5(�)+sin(q1 log r)h5(�)] (32)
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where the function K� 1
(t) is undetermined by this local analysis and has to be calculated by

considering the global flow.
In this fashion, it is possible to build the first terms of the asymptotic solution of the

Navier–Stokes equation near the point s

�=rf1(�, t)+r2f2(�, t)+r3f3(�, t)+r�1f4(�, t)+r4f5(�, t)+r1+�1f6(�, t)+o(r1+�1)
(33)

As stated previously, this asymptotic solution may not be correct at t=0 when the lid velocity
U(t) varies with time. Only the first two terms will be used in the examples reported hereafter,
and they represent a valid approximation of the singular solution at t=0 provided that
U(0)=0. On the other hand, note that �3=r3f3 is proportional to U� (t)+U3(t). The
consideration of this term for representing the third singular term at the initial time would
furthermore require that U� (0)=0.

4. NUMERICAL TREATMENT

The principle of the subtraction technique is to calculate a sufficiently smooth solution thanks
to the subtraction of the leading part of the singular solution. In the case of singular problems,
such as the scraper problem, where the boundary conditions are non-homogeneous and the
first terms of the asymptotic solution near the singular point s are completely determined from
the local analysis, these singular terms can be easily subtracted from the complete solution
according to

V=V� +V� , p= p̃+ p̄ (34)

The field (V� , p̃) refers to the first K terms of the asymptotic solution

V� = �
K

k=1

Vk, p̃= �
K

k=1

pk (35)

where (Vk, pk) is calculated from �k defined in Equation (20). The resulting field (V� , p̄) is more
regular than (V, p), since its behaviour near the singular points is given by the first term of the
asymptotic solution neglected in Equation (35), i.e.

V� �VK+1, p̄�pK+1 (36)

The field (V� , p̄) satisfies the set of equations

�V�
�t

+N(V� , V� )−
1

Re
�2V� +�p̄=F (37a)

� ·V� =0 (37b)
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which is similar to the Navier–Stokes system where

N(V� , V� )= (V� ·�)V� + (V� ·�)V� + (V� ·�)V� (38)

and F is a source term depending only on V� . These equations are solved in the bounded
domain �, and the associated boundary conditions

V� =g on �� (39)

where g (which depends also on V� ) has a zero total flux through ��. The initial condition
V� 0=V(0)−V� (0) is defined as a square integrable function verifying the incompressibility
constraint (37b) such that

V� 0 ·n=g0 ·n on �� (40)

In the examples reported hereafter, it has been proved sufficient to subtract the first two terms
of the asymptotic solution (K=2, NS2 solution technique) to obtain excellent convergence
properties. Calculations where only the first term is removed or where no singular terms are
removed were also considered and referred to in the following as the NS1 technique and the
NS0 technique respectively.

Equations (37)–(39) are solved by means of the projection schemes developed by Botella
[20,28] and defined by the two following steps:

� Prediction step

1
�t

�
a0V� *+ �

2

i=0

biV� n− i�+ �
2

i=0

diN(V� n− i, V� n+1)−
1

Re
�2V� *+ �

1

i=0

ci�p̄ n− i=Fn+1

(41a)

V� *���=gn+1 (41b)

� Projection step

a0

�t
(V� n+1−V� *)+�

�
p̄ n− �

1

i=0

cip̄
n− i�=0 (42a)

� ·V� n+1=0 (42b)

V� n+1 ·n���=gn+1 ·n (42c)

where �t denotes the time step and the superscript n indicates that the variables are evaluated
at the time t=n�t for n=0, 1, 2, . . . These schemes combine a backward time differentiation
formula, an Adams–Bashforth extrapolation for the convective term and a semi-implicit
extrapolation for the pressure. The a0, bi, ci, di coefficients, yielding second-order and
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Table V. Coefficients of the second- and third-order projection schemes.

a0 b0 b1 b2 c0 c1 d0 d1 d2Order

0−120101/2−23/22
3−12−1/33/2 −3−311/63 1

third-order time accurate schemes, are given in Table V. The third-order scheme has been
employed for the unsteady computations reported hereafter, while steady states computations
were obtained by means of the second-order scheme. In the latter case, the steady solution is
defined by

max�� c
��n+1−�n�

�t max�� c
��n+1� �	 (43)

were � denotes the components of V� and �� c refers to the computational grid. The values of
	 will be defined for each of the examples reported below.

The special approximation is based on a PN−PN−2 Chebyshev-collocation method, where
the velocity is approximated with a polynomial of degree Nx at most in the x-direction and Ny

in the y-direction, its values being defined on the (Nx+1)× (Ny+1) Gauss–Lobatto grid. On
the other hand, the pressure is defined as a polynomial of degree two less in both directions,
and is calculated at the inner nodes of the above Gauss–Lobatto grid. The prediction step (41)
amounts to a Helmholtz problem for V� * solved by means of the diagonalization method [34].
The projection step (42) is discretized such that the divergence equation is satisfied at the inner
collocation nodes (strong formulation, Botella [20]) and results in an Uzawa equation for the
pressure, solved by the diagonalization technique. This discretization prevents the pressure
from being polluted by spurious modes, and avoids the necessity to prescribe boundary
conditions for the pressure. This way of solving the projection step enables us to build
high-order projection schemes, where the order of the time accuracy of the velocity and of the
pressure is the same.

When using a multi-step scheme, the usual problem is to calculate the solution at the first
time cycles, namely (V� 1, p̄1) for the second-order scheme and (V� 1, p̄1) and (V� 2, p̄2) for the
third-order one. The second-order scheme is used here only for the calculation of steady
solutions, so that the accuracy of the starting scheme is not of importance. Therefore, we
simply pose V� −1=V� 0 and p̄0=0, which leads, with a convenient value of �t, to a first-order
scheme. For the computations using the third-order scheme, the calculations of (V� 1, p̄1) and
(V� 2, p̄2) are performed by using the following starting scheme of implicit Runge–Kutta type:

V� *−V� n

�t
+N(V� n, V� n)−

1
Re

�2V� n+�p̄ n=Fn (44a)

V� *���=gn+1 (44b)
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2V� **−V� *−V� n

�t
+N(V� *, V� n+1)−

1
Re

�2V� **+�p̄ n=Fn+1 (45a)

V� **���=gn+1 (45b)

V� n+1−V� **
�t

+
1
2

�(p̄ n+1− p̄ n)=0 (46a)

� ·V� n+1=0 (46b)

V� n+1 ·n���=gn+1 ·n (46c)

The truncation error of this scheme is of second-order but according to classical results on the
accuracy of solution of ordinary differential equations [35], the solution (V� n, p̄ n) for n=0, 1 is
expected to be third-order accurate. In addition to the initial condition V� 0, the scheme needs
the knowledge of an initial pressure field p̄0. This pressure field is determined from the
Neumann problem [36,37]

�2p̄0=� · [F0−N(V� 0, V� 0)] in � (47a)

�p̄0

�n
=
�
F0+

1
Re

�2V� 0−N(V� 0, V� 0)−
�V� 0

�t
n

·n on �� (47b)

These equations are obtained by taking at t=0 the divergence of Equation (37a) and its
normal component at the boundary respectively. Note that the solution at subsequent times
may display a singular behaviour near t=0 if some compatibility conditions on the data are
not satisfied [36–38]. This is not a consequence of the determination of p̄0 but a general result
on the regularity of the solution of the Navier–Stokes equations near t=0. However, from the
computational point of view, the effect of such a singularity is rapidly damped.

5. LID-DRIVEN CAVITY FLOW

The first example of the application of the subtraction technique to the solution of singular
Navier–Stokes problems concerns the well-known lid-driven cavity flow, to be solved in the
domain �= ]0, 1[× ]0, 1[. The boundary conditions are V= (−1, 0) on the side y=1 and
V=0 on the other three sides. The reference quantities for this problem are the top-wall
velocity and the length of the side of the square.

The main difficulty of the numerical solution of this problem is, at least for spectral
methods, the presence of singularities at the corners. At corners s=A(0, 1) and s=B(1, 1),
where the velocity is discontinuous, the local singular solution can be written as the asymptotic
expansion (20), whose first terms read

� s=rf1
s(�)+r2f2

s(�)+r3f3
s(�)+r�1f4

s(�, t)+ · · · (48)
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The first three terms are completely determined by the algorithm described in Section 3, and
since the boundary conditions are stationary, they are found independent of time. The analytic
expression of �1

s =rf1
s and �2

s =r2f2
s, which are to be used in the subtraction method, are given

by Botella and Peyret [22]. The first term �1
s characterizes the behaviour of the solution near

the singular corners: at s=A, B the vorticity 
=��/�x−�u/�y and the pressure are infinite
and behave like 1/r. On the other hand, at corners C(1, 0) and D(0, 0), where the boundary
conditions are homogeneous, the leading term of the expansion is given by the first eigenfunction
(32) of the Stokes problem, so that the singularity is much weaker since only the second
derivatives of 
 and p are unbounded. As we shall see later, the effects of this singularity is
relatively weak on the numerical solution and its treatment is not taken into account in this work.

For this problem, the subtraction method consists in decomposing the field (V, p) according
to Equation (34), where the singular part (V� , p̃) contains the most singular terms of the
asymptotic expansion at both corners A and B. In the NS1 method, the singular part is defined
as

V� =V1
A+V1

B, p̃=p1
A+p1

B (49)

so that the following behaviour is found for the computed solution near s=A :

V� +V1
B�RerF2(�), p̄+p1

B� log rG2(�) (50)

the fields V1
B and p1

B being smooth in the region. An analogous behaviour is found near corner
B. Note that in the NS1 method, the computed pressure is unbounded near the upper corners.
The NS2 method consists in subtracting not only the first (Stokes) term at s=A, B, but also
the first Navier–Stokes term, according to

V� =V1
A+V2

A+V1
B+V2

B, p̃=p1
A+p2

A+p1
B+p2

B (51)

The behaviour of the computed solution near s=A is then

V� +V1
B+V2

B�Re2r2F3(�), p̄+p1
B+p2

B�RerG3(�) (52)

At corners C and D, where no treatment is considered, the behaviour of (V� , p̄) for both
subtraction methods is given by the first Stokes term

V� +V� �K� 1
(t)r2.74[cos(1.13 log r)g�(�)+sin(1.13 log r)h�(�)] (53a)

p̄+ p̃�K� 1
(t)r1.74[cos(1.13 log r)gp(�)+sin(1.13 log r)hp(�)] (53b)

Thus, the solution computed by the subtraction method is more regular at these corners than
at A and B. Note that the computed solution (V� , p̄) is submitted to the influence of the time
discretization error. It is expected that the behaviour of the computed solution is not greatly
affected by this error in so far as the third-order scheme is used for the calculation of unsteady
flows.
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Extensive numerical results on steady cavity flows, mainly for the flow at Re=1000,
obtained with the NS2 method, were previously reported by Botella and Peyret [22]. In the
following, we mainly focus on evaluating the accuracy given by the subtraction technique. For
that purpose, the NS0, NS1 and NS2 methods are applied to the calculation of the steady flow
(defined by the criterion (43) with 	=10−10) at Re=1000. A first qualitative evaluation is
made when comparing the isovorticity lines of the NS0 solution (i.e. no singular terms are
subtracted, Figure 3(a)) and the NS2 solution (Figure 3(b)). Each figure displays the same
contour lines obtained from a N=Nx=Ny=128 truncation solution, interpolated on a fine
513×513 Gauss–Lobatto grid. The efficiency of the subtraction method is made clear by
observing that the Gibbs oscillations displayed by the NS0 solution have disappeared when the
NS2 method is employed. We mention that, at the scale of the figures, the isovorticity lines
obtained with the NS1 method are indistinguishable from those displayed for the NS2
solution.

Figure 4(a) shows the spectrum {�
̂̄k �, k=0, . . . , N} of the expansion of the computed
vorticity 
̄ in its Chebyshev basis along the boundary AD. Note that in the NS0 method 
̄=


since no singular term is subtracted. For this method, where the vorticity behaves like 1/r near
corner A, no decay of the spectral coefficients is observed. On the other hand, it can be clearly
seen that the more the solution is smooth, the more the coefficients decay faster. Nevertheless,
the decay is slow and does not exhibit an exponential rate since the computed solutions are
weakly singular at corner A : the first derivative of the vorticity obtained from the NS1 solution
and the second derivative of the vorticity obtained from the NS2 solution are unbounded. The
spectrum of 
̄ along the midline x=1/2 is displayed in Figure 4(b). On this line located at an
equal distance far from the singular corners A and B, an exponential decay of the first
coefficients of the Chebyshev expansion of the solution is observed. A saturation of the decay
is nonetheless observed at the tail of the spectrum, testifying of a pollution effect due to the
presence of the singularities.

Figure 3. Isovorticity lines of the flow at Re=1000, for N=128. (a) NS0 solution and (b) NS2 solution.
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Figure 4. Chebyshev spectrum of 
̄ along (a) the boundary x=0 and (b) the mid-line x=1/2 obtained
by the various methods for the flow at Re=1000, with N=128.

The global approximation rate of the subtraction method has been measured by estimating
the continuous error norms �VN−Vref�Lw

2(�) for the velocity and �pN−pref�Lw
2(�) for the

pressure. The complete solution decomposes as

VN=V� +V� N, pN= p̃+ p̄N

where (V� N, p̄N) is the solution computed on the (N+1)× (N+1) collocation grid. The field
(Vref, pref)= (V� +V� ref, p̃+ p̄ref) denotes a solution sufficiently accurate for the evaluation of the
errors. This reference solution is chosen as the NS2 solution with N=160, which has proved
in Reference [22] to be our most accurate solution. The above norms are estimated by using
quadrature formulae as described in Section 2.

Figure 5(a) and (b) displays, respectively, the L

2 error on the velocity and the pressure

versus the degrees of freedom N measured for the various methods. The rate of the decay of
the error that is reached asymptotically is compared in Table VI with the interpolation rate of
the computed solution (V� , p̄), the latter being obtained by a direct application of formula (17)
for functions displaying a singularity in r�f(�) at a corner of �. We recall that the behaviour
of the solution computed by the NS1 and NS2 methods is given by Equations (50) and (52)
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Figure 5. Global approximation error in the L

2 norm obtained by the various methods for (a) the

velocity and (b) the pressure; lid-driven cavity flow at Re=1000.

Table VI. Comparison of the global approximation rate and the interpolation
rate of the solution computed by the various methods; flow in the lid-driven

driven cavity at Re=1000.

NS0 NS1 NS2

1.1 3.0��VN−Vref��Lw
2(�) 5.1

Interpolation of V� , Equation (17) 1 3 5

— 1.1��pN−pref��Lw
2(�) 3.2–3.4

Interpolation of p̄, Equation (17) — — 3

respectively. The results of Table VI show the good adequation of the approximation rate of
the velocity with the one predicted by Equation (17). This illustrates the efficiency of the
subtraction method and shows, in particular, that the overall numerical method gives an
approximation rate for the velocity that is optimal since it matches the interpolation rate of the
solution.

As for the velocity, the convergence rate of the computed pressure is in good agreement with
the interpolation rule (17): while no accuracy can be obtained with the NS0 method, the
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pressure computed with NS1, even if weakly singular (see Equation (50)), is first-order
accurate. However, note that the convergence rate measured for the NS2 method is slightly
superior to the one predicted by Equation (17). This rate is somewhat optimistic since p̄ref may
not be accurate enough for properly evaluating the NS2 errors, mainly for N=128. The results
of Table VI would suggest that the Inf–Sup constant (see, e.g. References [23,26]) of the
projection step (42) is independent of N, so that the approximation of the pressure by our
spectral scheme is optimal. We are not aware of theoretical results on the literature about this
property.

The accuracy of the subtraction method has also been checked for the Stokes flow (see
Reference [22] for further numerical results). Since the non-linear singularities r2f2

s and r3f3
s in

Equation (48) are irrelevant, the subtraction of the first singularity rf1
s at s=A, B (i.e. NS1

method) yields a computed solution whose regularity is analogous to Equation (53) at each
corner of �. For that flow, it has been measured that the L


2 error on the velocity and the
pressure behave asymptotically like 100N−6.5 and 50N−4.2 respectively. As for the non-linear
case, these approximation errors are in good agreement with estimation (17), even though this
last formula does not take into account the trigonometric and logarithmic terms involved in
Equation (53).

The above convergence rates concern the accuracy of the method in a global sense only. The
pollution effect of the singularities extends along the boundaries and it has been observed in
References [22,28] that the largest errors are localized in these zones. In the largest part of the
domain, the solution is not greatly affected by the singularities, and the pointwise accuracy is
much better than the one evaluated in the L


2 norm. As an example, the pointwise accuracy
obtained on the maximum of u on the line y=1/2 is evaluated in O(N−5) for the NS0
solution, and is, respectively, O(N−9) and O(N−17) for the NS1 and NS2 solution. In contrast,
the accuracy of the solution, particularly the vorticity field, is weaker near the upper singular
corners A and B ; a filtering post-process has been employed in Reference [22] in order to
improve the convergence of the pressure fields near these singular points.

A further illustration of the accuracy and the efficiency of the subtraction method is given
by computation of the unsteady flow that appears after a first Hopf bifurcation occurring at
a critical Reynolds number Rec. In Reference [39], the study of the eigenvalues of the
discretized system has detected this bifurcation at Rec	7763. The flow at Re=9000 is
computed with the NS1 and NS2 methods by means of the third-order scheme described in
Section 4. The spatial resolution is defined by N=96, which is rather coarse for this value of
Re, and the time step is �t=8×10−4. The criterion used for monitoring the time evolution
of the flow is the discrete kinetic energy Ec(t), defined by

Ec(t)=
� �

N

i, j=0

un(xi, yj)2+�n(xi, yj)2�1/2

, with un= ū n+ ũ, �n= �̄n+ �̃ (54)

The periodic state is considered to be reached when the difference of two consecutive extrema
of Ec(t) is below 10−9. The steady flow at Re=1000 is taken as an initial condition for the
NS1 computation and the periodic state is obtained after more than two million time cycles.
The NS2 solution is obtained by starting the computation with the time periodic NS1 solution.
Figure 6(a) and (b) displays the isobaric lines of the NS2 solution respectively at times
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Figure 6. Isobaric lines of the periodic flow at Re=9000 computed by the NS2 solution at the time (a)
t=664.7688 and (b) t=665.8152.

corresponding to the minimum and maximum of the kinetic energy. Note that these lines
display no oscillations, even though the spatial discretization is coarse.

Some characteristic results of the periodic solution are given in Table VII. In this table, the
maximal and minimal values of the kinetic energy during one period are denoted Ecmax and
Ecmin respectively. In the same fashion (umax, umin) and (�max, �min) refer to the extreme of u and
� at the location (0.5, 0.5) during one period. Note that both solutions are close: the difference
between the period T of the extrema of the kinetic energy computed by the NS1 and NS2
methods is only �t.

The numerical results presented in this section show the dramatic enhancement of the
approximation rate when the subtraction method is used. The computation of the periodic
flow proves that this technique can be employed to compute unsteady singular flows at high
Reynolds numbers, as long as the boundary conditions are non-homogeneous and the
asymptotic expansion completely determined. As it will be shown in the next section, a
refinement of the subtraction method has to be made for a non-homogeneous problem whose
asymptotic solution admits the addition of an arbitrary eigensolution, so that a constant has
to be determined from the consideration of the global solution.

Table VII. Characteristic results on the periodic flow in the lid-driven cavity at
Re=9000.

�minT Ecmax Ecmin umax umin �max

0.009022.2464�8×10−4 0.33401 0.33372 0.02748 0.02707 0.00943NS1
0.009010.009420.027110.027520.33386NS2 0.334142.2456�8×10−4
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6. INJECTION OF A FLUID INTO A CHANNEL

This application deals with the injection of a viscous fluid into a channel with a constant
velocity profile. The fluid motion is governed by the Navier–Stokes equations, to be solved in
the domain �= ]0, 4[× ]0, 1[. The boundary conditions associated with this problem are

V= (1, 0) if
1
3

�y�
2
3

V=0 otherwise

�
�
�
�
�

at the upstream boundary x=0

a parabolic profile for the velocity V= (2y(1−y), 0) at the downstream boundary x=4, and
V=0 on the other two sides. The Reynolds number is defined by taking as reference
parameters the width of the channel and the velocity of the fluid at the upstream boundary.

The discontinuity of the velocity profile at the upstream boundary induces singularities that,
contrary to the driven cavity problem, are no longer located at the corners. As suggested by
the interpolation rates (16) and (17), the effects of the singularities on the numerical solution
of the injection problem are much greater than for applications with corner singularities. More
precisely, the asymptotic analysis shows that at the singular points A(0, 1/3) and B(0, 2/3), the
vorticity and pressure are infinite and behave like 1/r.

For the purpose of determining the first terms of the asymptotic solution near the points A
and B, it is convenient to consider the model problem sketched in Figure 7, where the
Navier–Stokes equation (18) is to be solved in the half plane {(r, �), 0����}, with the
boundary conditions

��

�r
= −1,

��

��
=0 on the side �=0,

��

�r
=0,

��

��
=0 on the side �=� (55)

The determination of the first terms of the Navier–Stokes equations is performed in a fashion
similar to the one described in Section 3. We anticipate the following by mentioning that it will
be found necessary to introduce logarithmic terms in the expression of the singular solution,
and that the first Navier–Stokes term cannot be determined completely by the local analysis.
It will be shown that this term involves a constant that depends on the global flow. This
constant will be determined numerically by using an iterative process.

The solution near the point s is sought of the form (20) satisfying Equation (23). The first
term �1=r�1f1(�) is such that f1 satisfies L� 1

f1=0 with �1=1 (from the boundary conditions
(55)). The expression of f1 is found to be

Figure 7. Model singular problem for the injection application.
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f1(�)=
1
�

[(�−�) cos �−sin � ] (56)

As for the model problem described in Section 3, the Stokes system admits eigenfunctions of
the form ��=r�f, where � is the solution (else than 1, which gives f1=0) of Equation (22) with
�=�, namely � is any positive integer greater than 1. Therefore, the lowest eigenvalue is
�1=2, and the associated expression of �� 1

is

�� 1
=r2K� 1

(cos 2�−1) (57)

where K� 1
is an arbitrary constant.

The determination of the second term (first Navier–Stokes term) �2 leads to some trouble.
More precisely, the cancellation of the corresponding terms in Equation (23) gives �2=2, and
f2 is solution to the non-homogeneous equation (30) with homogeneous boundary conditions
deduced from Equation (55). In fact, the obtained differential problem is not solvable because
it leads to a non-homogeneous linear system for the coefficients of f2, which has no solution
since its determinant is zero with a non-compatible right-hand side. The reason is that �2=2
is both an eigenvalue of the Stokes problem and the exponent of the first Navier–Stokes term
of the asymptotic expansion. Therefore, the form (20) of this expansion is not suitable for that
problem. As it is often the case for this type of asymptotic expansion (see, e.g. Reference
[40,41]), it is found necessary to introduce logarithmic terms into expansion (20), namely the
term �2 is now considered as

�2=r2 log r g2(�)+r2f2(�) (58)

Thus, the simultaneous cancellation of the terms in r2 log r and r2 of Equation (23) leads to the
differential equations

L2 g2=0 (59a)

L2f2+4g�2=ReN1,1( f1, f1) (59b)

with appropriate homogeneous boundary conditions obtained from Equation (55) for both g2

and f2. Note that Equation (59a) determines g2 up to an arbitrary constant c2. Furthermore,
the determination of f2 by Equation (59b) leads to a linear system whose determinant is zero,
as before. However, it is now possible to choose c2 such that its right-hand side is made
compatible. As a result, the function f2 can be calculated and thus the first Navier–Stokes term
�2 reads

�2=
r2Re
32�2 [(cos 2�−1)(2� log r+8K2−7�)+2(�−�)� sin 2� ] (60)

but the constant K2 is unknown. It can be observed that the K2 term in Equation (60) is
nothing but the eigenfunction (57). This testifies that it is possible to add such an eigenfunction
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to the solution �2. The part in r2 log r, which is the leading part of �2, is completely
determined. Moreover, it can be observed that the undetermined part is smooth since it is a
quadratic monomial in Cartesian co-ordinates. Thus, discarding this part (by posing K2=0)
does not reduce the regularity of the solution computed by the NS2 subtraction method. As a
matter of fact, this regularity is governed by the third term of the asymptotic solution

�3=r3 log2 r h3(�)+r3 log r g3(�)+r3f3(�) (61)

obtained in a fashion similar to the one described for �2. The functions h3 and g3 are
completely determined but not f3, since �3=3 is an eigenvalue of the Stokes problem. Note
also that �3 is proportional to Re2.

It has to be mentioned that the expression of �2 can also be obtained by a technique due to
Moffatt and Duffy [40] (see also Reference [11]). This technique amounts to building the
asymptotic expansion in the case where the boundaries intersect with the angle �=�−	, with
	�0. The first Navier–Stokes term �2,	 is completely determined in this configuration, since
the lowest eingenvalue �1,	 is different from 2. In the limiting case 	
0, both the eigenfunction
�� 1,	

and �2,	 observe a singular behaviour in 1/	 that can be eliminated by choosing the
arbitrary constant in �� 1,	

such that �2,0= lim	
0 [�� 1,	
+�2,	 ] is finite. As a result, the

expression of �2,0 to the one given in Equation (60), with the exception that the constant K2

is identified and is equal to 7�/8. Nevertheless, we point out that it is still possible to add
eigenfunction (57) to �2,0 such that only the part in r2 log r is completely determined.

As an illustration, the steady flow at Re=100 is computed by treating the singularities at
A(0, 1/3) and B(0, 2/3) by using the subtraction method. The singular part of the NS1 solution
is completely determined by the above asymptotic analysis. On the other hand, the singular
part of the NS2 solution is determined up to the constant K2 (by using the symmetry of the
problem, it is easily shown that the undetermined constants K2

s for s=A, B verify K2
A=K2

B=
K2). As stated previously, the use of the NS2 method with an arbitrary value of K2 only
subtracts the (main) singularity in r2 log r, and does not affect the regularity of the computed
solution. It is nonetheless interesting to compute this constant which, for example, would be
necessary to calculate the higher-order term of the asymptotic expansion. The problem of its
determination is also related to the treatment of singular solutions in the case of homogene-
nous boundary conditions and, in these respects, is of interest. A typical example of such
problems in fluid mechanics is given by the flow in a channel with a sudden expansion (see, e.g.
[5,14,16]). The constants involved in the expansion of the solution near the singular corner
need to be determined as a part of the numerical solution. In the first two references, they are
determined by an iterative matching of the dominant part of the asymptotic solution with a
numerical solution computed outside a small neighbourhood of the corner. The third reference
uses the singular finite element method, where the behaviour of the first terms of the expansion
is incorporated in the trial function basis. It should be noted that the leading part of the
expansion represents only the solution at a distance from the corner that decreases inversely
with the Reynolds number. So, any of these methods needs grid points sufficiently near the
corner to obtain a satisfactory accuracy, and their clustering must be chosen according to the
value of the Reynolds number.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 125–163



CHEBYSHEV-COLLOCATION METHOD 151

The technique used here for the determination of K2 bears some similarity to both methods.
As in Reference [14], the fields (V� , p̄) are computed in the whole domain from the set of
Equations (37) and (39), where the form of the singular solution is incorporated. As in
References [5,16], the constant K2 is then iteratively determined by imposing that in the vicinity
of a singular point (say s=A), the complete solution (V, p) is accurately represented by the
first two singular terms. According to the construction of the asymptotic solution, this
approximation is only valid within a distance r to A, where the contribution of the following
terms is negligible, i.e. we get from Equations (60) and (61)

r log2 r�Re−1=10−2 (62)

As a result, this would imply that (V� , p̄) behaves like the third term in the asymptotic
expansion, i.e. the value of K2 is determined so that the second term is completely subtracted.
Note that since the flow is symmetric, an analogous behaviour is observed near s=B.

In practice, this iterative process is assimilated here to the time integration since the
calculated flow is steady and K2 does not depend on time. The initial condition is defined as
the rest, where the initial guess of K2 is K2

0=0. At t=n�t, the fields (Vn, pn) are computed by
means of the projection scheme with the value K2

n−1 obtained at the previous time level; the
value K2

n is then calculated by requiring that at the point P, located at a distance rp from A
such that Equation (62) is verified

Vn(P ; K2
n−1)=V1

A(P)+V2
A(P ; K2

n) (63)

where V1
A and V2

A refer to the first two terms of the asymptotic solution near A. From
Equation (60), the part V2

A is of the form

V2
A(P ; K2)=V2,1

A (P)+K2V2,2
A (P)

so that K2
n in Equation (63) can be explicitly evaluated. This algorithm is considered to reach

convergence when �K2
n−K2

n−1��10−9 and the steady state criterion (43) with 	=10−9 is
fulfilled. We point out that in this algorithm, the matching between the asymptotic and
computed solution is performed at a single point only. A refinement of this technique would
be to consider a least-squares matching, as in Reference [5,16]. Expression (62) clearly shows
that for a given computational grid, the accuracy obtained on K2 depends essentially on the
nearness of P to A. As a result, the use of a grid point as the location of P would require to
cluster the mesh in the vicinity of A so that Equation (62) is valid. In contrast, by using the
properties of the Chebyshev polynomial approximation it is possible to evaluate expression
(63) at a point P sufficiently near A in order to obtain K2 with a high accuracy. Table VIII
summarizes the values of K2 for the flow at Re=100, obtained when various locations of P are
used in the iterative algorithm with a grid defined by Nx=96 and Ny=128. In the first
computation (second line of Table VIII), point P is chosen as the inner collocation point that
is the closest to A. Nevertheless, expression (63) seems not to be valid at this location of P, so
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Table VIII. Values of K2 obtained for the flow at Re=100 when the iterative
algorithm is used with various locations for P.

rp log2 rp K2Point P

Collocation point, rp	2×10−3 3.81743258×10−3

3.81211063×10−6(rp, �p)= (10−8, 0)
(rp, �p)= (10−8, �/4) 3×10−6 3.8121105

The co-ordinates of P are given in the polar system of origin A, defined by xp=rp cos �p,
yp=1/3+rp sin �p.

that the first two terms of the asymptotic solution might not be dominant. Further computa-
tions were performed by taking P much nearer of A, at a location that is no more a collocation
point. In this fashion, it is possible to obtain K2 with an 8-digit accuracy as shown in Table
VIII. These results illustrate the fact that the evaluation of K2 needs to be performed as close
as possible to A.

The isovorticity lines given by the NS0 and NS2 methods are compared in Figure 8. Note
that at the scale of this figure, the isolines obtained with the NS1 method are indistinguishable
from those displayed by the NS2 solution. It is worthwhile to recall that the vorticity is infinite
at points A and B. Thus, these points are not used for the plots shown in this figure and one
that follows. It can be observed from Figure 8(a) that huge oscillations are apparent in the
NS0 solution near the upstream boundary. Nevertheless, when compared with the lines given
by the NS2 method, these oscillations seem to affect only the flow on the first vertical lines of
the grid. Figure 9 displays the corresponding vorticity profiles at the upstream boundary. The

Figure 8. Isovorticity lines of the flow at Re=100, with Nx=96 and Ny=128, (a) NS0 solution, (b) NS2
solution.
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Figure 9. Vorticity profile on the upstream boundary for the flow at Re=100. (a) NS0 solution at the
collocation points, (b) NS1 solution (solid line) and NS2 solution (dashed line) interpolated on 1001

equidistant points.
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NS0 profile (Figure 9(a)) is entirely polluted by Gibbs oscillations. Owing to the global nature
of the spectral approximation, the singular behaviour in 1/r of the vorticity induces oscillations
that spread along the whole boundary. These oscillations have almost disappeared from the
NS1 and NS2 profiles (Figure 9(b)). The difference in the profiles displayed in this last figure
near the singular points is due to the fact that the singular vorticity term 
2

s (corresponding to
the term �2

s), which grows like log r near s=A, B, is part of the solution computed by NS1,
while this term is contained in the analytical part of the NS2 solution. This also means that the
vorticity computed by NS1 is still unbounded while it behaves like r log2 r for the NS2 method.

Finally, it must be noticed that the effect of the singularities on the accuracy of the
computations is not only localized near the upstream boundary. Figure 10 displays the profile
of the u component of the velocity along the section x=2. At this distance from the upstream
boundary, the NS2 solution is very accurate: the profiles obtained with a grid of 97×65 points
and 97×129 points are indistinguishable at the scale of the figure. In contrast, the NS0
solution computed with the same grids has clearly not yet spatially converged. This shows that
when the singularities in s=A, B are not treated, a numerical pollution phenomenon degrades
the accuracy of the solution away from the upstream boundary. This pollution phenomenon
is much more severe here than in the driven cavity application, where the accuracy of the NS0
solution proved to be satisfactory in the centre of the domain.

Figure 10. Profile of the velocity u in the section x=2 for the flow at Re=100, given by the NS2
method with (1) the 97×65 grid, (2) the 97×129 grid, and by the NS0 method with (3) the 97×65 grid,

(4) the 97×129 grid. Note that the curves labelled (1) and (2) coincide at the scale of the figure.
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7. FLOW IN A TWO-DIMENSIONAL PISTON ENGINE

Finally, the subtraction method is applied to the unsteady flow in a two-dimensional piston
engine. The Navier–Stokes equations for a compressible fluid are simplified by using the
assumptions usually made for this type of flow [42–44], i.e. the Mach number is low, and that
the fluid density � is homogeneous in space and is a function of time alone. As a result, by
using the ideal gas law, the temperature T depends only on time and the energy equation plays
no role. Furthermore, the system can be put into a simpler form by decomposing the variables
into a basic flow, taking into account the compressibility effect, and an incompressible
perturbation flow V �= (u �, ��) and p � such as

V=V� +V �, p= p̂+p �, �= �̂, T=T� (64)

as done by Pascal and Buffat [44] for the turbulent flow compressed between two parallel
planes. The above quantities are dimensionless. The reference velocity is chosen as the maximal
speed of the piston. The reference quantities for pressure and density are their values at the
initial time. The reference length is the maximal height of the piston, so that at t=0 the
computational domain is �0={0�X�1, 0�Y�1}. At t�0, the domain �t={0�X�
1, 0�Y�Yp} is compressed in the Y-direction such as Yp=L(t), with L(0)=1, is the
dimensionless instantaneous piston height (see Figure 11). The boundary conditions are
V= (0, L� (t)) on Y=Yp and V=0 on the other three sides. The initial condition V0 will be
defined later. Note that when the piston is moving, these boundary conditions display
discontinuities at the contact points A(0, Yp) and B(1, Yp), where the piston meets the walls
of the engine. After transforming the physical domain �t into the fixed domain �={0�x�
1, 0�y�1} by the co-ordinate mapping x=X, y=Y/L(t), and performing a change of
dependent variables, the non-dimensional equations for the transformed perturbations (�=
(u, �), �) are

Figure 11. Sketch of the two-dimensional piston engine.
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where u=u �, �=L(t)�� and �=p �. These equations have a form similar to the Navier–Stokes
equations for an incompressible fluid, with the difference that the quantities �=1/L2(t) and
�̂=L(0)/L(t) appear in the operators. The dimensionless kinematic viscosity is supposed to
follow the law �=T� 3/4/�̂ discussed in Reference [45], so that

�= �̂ (3�−7)/4, with �=1.4 (66)

i.e. � is a function of the time that decreases as the domain is being compressed. The boundary
conditions for the velocity perturbations are

u=0, �=0 on the sides y=0 and y=1 (67a)

u=0, �=�y on the sides x=0 and x=1 (67b)

with �= −L� (t)L(t). When the piston is moving, these boundary conditions introduce
singularities at the corners A, B, C and D of the computational domain, the latter being the
respective images of A, B, C and D through the co-ordinate transform. At corners A(0, 1) and
B(1, 1), the singularities are similar to those generated by the discontinuous boundary
conditions in the driven cavity problem; the vorticity and the pressure are unbounded and
behave like r−1. The singularities at the corners C(1, 0) and D(0, 0), which are generated by
the decomposition (64) of the dependent variables, are weaker since only the velocity
derivatives are discontinuous. As a result, the vorticity gradient and the pressure behave like
r−1 and log r respectively near these points.

After having defined the streamfunction by u=� ��/�y, �= −��/�x, the determination of
the leading part of the asymptotic expansion near each singular point is a straightforward
application of the technique described in Section 3. As s=A, B, the first terms of the singular
solution reads

�=rf1
s(�, t)+r2f2

s(�, t)+r3f3
s(�, t) (68)

In particular, �1
s =rf1

s is a Stokes term and �2
s =r2f2

s is a term generated by the inertia forces;
both terms are unsteady due to boundary conditions (67). Note that, as stated previously in
Section 3, time appears only as a parameter in these two terms, the first term generated by the
unsteadiness being �3

s =r3f3
s. The leading part of the singular expansion at s=C, D is found

to be given by the following first two Stokes terms:

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 125–163



CHEBYSHEV-COLLOCATION METHOD 157

�=r2g1
s(�, t)+r�1g2

s(�, t), with �1	3.74+1.12i� (69)

where the second of this term is an eigenfunction that is only determined up to a multiplicative
constant. Unless specified, the computations reported hereafter are obtained with a subtraction
method where the first two terms of the expansion at s=A, B and the first term at s=C, D
are subtracted. As a result, the regularity of the computed solution is the same as the one
computed by the NS2 method for the driven cavity flow, i.e. it is reasonable to expect a
O(N−5) accuracy for the velocity and a O(N−3) accuracy for the pressure. By analogy, this
method is referred in the following as the NS2 method.

Numerical experiments of a compression stroke are performed by using various initial
conditions defined by the Taylor–Green vortices

V0= (sin(m�x) cos(m�y), −cos(m�x) sin(m�y)) (70)

where the value of m will be defined later. The non-dimensional piston law is defined as

L(t)=
1
2

(1+
)+
1
2

(1−
) cos
� 2t

1−


�
where 1/
 is the total compression ratio, such as during the integration time [0, tc= (1−
)�/
2], which corresponds to a compression stroke, the piston compresses the domain from Yp=1
at t=0 to Yp=
 at t= tc. Note that L(0)=L(tc)=0, so that no spatial singularities are
present at the beginning and at the end of the compression. The computations are performed
by using the third-order scheme described in Section 4; the compatible pressure field needed
for the starting scheme (Equations (44)–(46)) is

p0= (cos(2m�x)+cos(2m�y))/4

Let us evaluate the quality of the singularity treatment by comparing the spectra of the
Chebyshev expansion of the solution obtained with the NS2 and NS1 method, the latter being
defined by the subtraction of the first term of the asymptotic expansion at each corner. The
parameters of the compression are m=1 (i.e. a unique Taylor–Green vortex), Re=500 and

=5×10−2; the collocation grid is defined by Nx=256 and Ny=128 and the time step is
�t=4×10−4. Figure 12 displays the spectra (�û̄k �) of the first component ū of the velocity
computed by both methods on the first horizontal grid line under the y=1 (i.e. corresponding
to the piston boundary in the physical domain) at t=1.2726 (Yp	0.1) when the singularities
are present. In this region, very close to the singular corners A and B, the benefit of subtracting
the first two terms (NS2 method, �̄�r2 at s=A, B) over the subtraction of the first term (NS1
method, �̄�r at s=A, B) is clearly seen on the better decay of the Chebyshev coefficients.

Finally, we present results on a compression stroke taking as initial condition (70) with
m=3. This initial condition generates nine counter rotating vortices of equal intensity, whose
streamlines are displayed in Figure 13(a). The parameters of the compression are 
=0.1, i.e.
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Figure 12. Chebyshev spectrum of ū on the first horizontal line of the grid under the side y=1, obtained
by (a) the NS1 solution and (b) the NS2 solution (see the text for the parameters of the computation).

a total compression ratio of 10, the Reynolds number is Re=1000, so that during the
compression stroke the ratio Re/� increases from 1000 at t=0 up to 103.7	5012 at the end of
the compression. The computational grid is defined by Nx=512 and Ny=256. The instanta-
neous streamlines of the flow are displayed in Figure 13 at various times of the compression
stroke. At the beginning of the compression, the confinement effect is not strong enough to
sustain the intensities of the initial vortices (Figure 13(a) and (b)). The final stage of the
compression is characterized by the apparition of numerous small eddies, until a large number
of eddies, with scales of the order of the piston height, fills the domain at the end of the
compression (Figure 13(c)–(e)). This alignment of small vortices is qualitatively similar to the
one observed by Naitoh et al. [42] in an axisymmetric piston engine. Figure 14 displays the
isovorticity lines at the last stages of the compression. Let us mention that the vorticity does
not display spurious oscillations during the compression process, attesting the efficiency of the
subtraction method. The final stage of the compression shows the creation of large vortex
sheets, characterizing the presence of strong gradients in the solution. It is indeed worthwhile
observing that, in this problem, the computational difficulties are no more related to the
treatment of corner singularities, but rather to the complex nature of the flow whose
representation needs a high spatial resolution.
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Figure 13. Instantaneous streamlines of the compression of nine Taylor–Green vortices. The domain is
being compressed from top to bottom.
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Figure 13 (Continued)

Figure 14. Isovorticity lines at various times of the compression of Taylor–Green vortices.
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8. CONCLUSION

A common criticism imposed on the spectral methods is that their application should be
restricted to a limited class of well-behaved flows, otherwise their accuracy is lost. We have
tried to show in this work how these methods can be employed to accurately compute flows
for which these methods seem, at first, not well suited. The subtraction technique can be
employed to solve a large class of singular flows, where the singularities are associated with
non-homogeneous boundary conditions, and for which the leading part of the singular
expansion can be constructed analytically. In the case of homogeneous boundary conditions,
an algorithm for the computation of the non-determined constants involved in the singular
expansion has been associated to the subtraction method. This algorithm takes advantage of
the global polynomial approximation of the spectral methods for evaluating the solution near
the singular points, where the asymptotic solution is dominant.

The study of the accuracy of the method that has been performed for the driven cavity flow
shows that the Chebyshev-collocation method handles corner singularities with an accuracy
that is, although not exponential, still of high order. The convergence rates measured in the
global Lw

2 norm have proved to be connected with the empirical estimates obtained in Section
2. This investigation allows us to connect in a practical sense the accuracy of the Chebyshev-
collocation method to the regularity of the solution. Moreover, the study of the local accuracy
has shown that the largest errors are located along the boundaries and that the accuracy
observed in the largest part of the domain is higher than the global convergence rate suggests.

Although satisfactory, the result obtained for the injection problem are nevertheless not as
good as in the driven cavity. It is to be reminded that the asymptotic analysis shows that this
application was much more singular than the driven cavity flow. A domain decomposition
method, which locates the singular points at corners of the computational domain as it is done
in Reference [10], would allow advantage to be taken of the doubling of the convergence rate
observed for corner singularities.

These results do not exhibit the theoretical ‘infinite’ accuracy commonly associated to
spectral methods. Nevertheless, the numerical tests performed for model singular problems
show that, as for the Chebyshev-collocation method, the accuracy of high-order finite
difference methods is also diminished by the singularities. In particular, spectral methods give
better results than a sixth-order Hermitian scheme on a variable mesh, for comparable
computational costs.

The use of the third-order projection scheme in association with the NS2 subtraction
technique proves to be efficient for computing high-Reynolds number singular flows, such as
the periodic flow in the driven cavity or the compressed flow in the piston engine. The
calculation of the latter flow, given the complexity of the problem, shows that this method may
be promising for problems of engineering interest in realistic situations, such as the three-
dimensional flow in a cylindrical piston engine.
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24. Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations. Springer: Berlin, 1994.
25. Bernardi C, Maday Y. Polynomial approximation of some singular functions. Applicable Analysis 1991; 42: 1–32.
26. Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral Methods in Fluid Dynamics. Springer: New York,

1988.
27. Peyret R, Taylor TD. Computational Methods for Fluid Flow. Springer: New York, 1983.
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29. Canuto C, Quarteroni A. Variational methods in the theoretical analysis of spectral approximations. In Spectral

Methods for Partial Differential Equations, Voigt RG, Gottlieb D, Hussaini MY (eds). SIAM-CBMS: Philadel-
phia, PA, 1984; 55–78.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 125–163



CHEBYSHEV-COLLOCATION METHOD 163

30. Pathria D, Karniadakis GE. Spectral element methods for elliptic problems in nonsmooth domains. Journal of
Computational Physics 1995; 122: 83–95.
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